46,934 research outputs found

    On entanglement-assisted classical capacity

    Get PDF
    This paper is essentially a lecture from the author's course on quantum information theory, which is devoted to the result of C. H. Bennett, P. W. Shor, J. A. Smolin and A. V. Thapliyal (quant-ph/0106052) concerning entanglement-assisted classical capacity of a quantum channel. A modified proof of this result is given and relation between entanglement-assisted and unassisted classical capacities is discussed.Comment: 10 pages, LATE

    Full counting statistics and conditional evolution in a nanoelectromechanical system

    Full text link
    We study theoretically the full distribution of transferred charge in a tunnel junction (or quantum point contact) coupled to a nanomechanical oscillator, as well as the conditional evolution of the oscillator. Even if the oscillator is very weakly coupled to the tunnel junction, it can strongly affect the tunneling statistics and lead to a highly non-Gaussian distribution. Conversely, given a particular measurement history of the current, the oscillator energy distribution may be localized and highly non-thermal. We also discuss non-Gaussian correlations between the oscillator motion and tunneling electrons; these show that the tunneling back-action cannot be fully described as an effective thermal bath coupled to the oscillator.Comment: 7 pages; figure added; typos correcte

    Shadow Tomography of Quantum States

    Full text link
    We introduce the problem of *shadow tomography*: given an unknown DD-dimensional quantum mixed state ρ\rho, as well as known two-outcome measurements E1,,EME_{1},\ldots,E_{M}, estimate the probability that EiE_{i} accepts ρ\rho, to within additive error ε\varepsilon, for each of the MM measurements. How many copies of ρ\rho are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O~(ε4log4MlogD)\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right) copies. This means, for example, that we can learn the behavior of an arbitrary nn-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only nO(1)n^{O\left( 1\right)} copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brand\~ao et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.Comment: 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension

    Thermal absorption in seeded gases Final technical report, 13 Feb. 1968 - 12 Feb. 1969

    Get PDF
    Thermal absorption in aerosol seeded hydrogen and helium gase

    Entanglement of pure states for a single copy

    Get PDF
    An optimal local conversion strategy between any two pure states of a bipartite system is presented. It is optimal in that the probability of success is the largest achievable if the parties which share the system, and which can communicate classically, are only allowed to act locally on it. The study of optimal local conversions sheds some light on the entanglement of a single copy of a pure state. We propose a quantification of such an entanglement by means of a finite minimal set of new measures from which the optimal probability of conversion follows.Comment: Revtex, 4 pages, no figures. Minor changes. Appendix remove

    Mechanically probing coherent tunnelling in a double quantum dot

    Full text link
    We study theoretically the interaction between the charge dynamics of a few-electron double quantum dot and a capacitively-coupled AFM cantilever, a setup realized in several recent experiments. We demonstrate that the dot-induced frequency shift and damping of the cantilever can be used as a sensitive probe of coherent inter-dot tunnelling, and that these effects can be used to quantitatively extract both the magnitude of the coherent interdot tunneling and (in some cases) the value of the double-dot T_1 time. We also show how the adiabatic modulation of the double-dot eigenstates by the cantilever motion leads to new effects compared to the single-dot case.Comment: 6 pages, 2 figure

    Mixedness and teleportation

    Get PDF
    We show that on exceeding a certain degree of mixedness (as quantified by the von Neumann entropy), entangled states become useless for teleporatation. By increasing the dimension of the entangled systems, this entropy threshold can be made arbitrarily close to maximal. This entropy is found to exceed the entropy threshold sufficient to ensure the failure of dense coding.Comment: 6 pages, no figure

    Psychological interventions for mental health disorders in children with chronic physical illness: a systematic review.

    Get PDF
    Children with chronic physical illness are significantly more likely to develop common psychiatric symptoms than otherwise healthy children. These children therefore warrant effective integrated healthcare yet it is not established whether the known, effective, psychological treatments for symptoms of common childhood mental health disorders work in children with chronic physical illness

    A Measure of Stregth of an Unextendible Product Basis

    Get PDF
    A notion of strength of an unextendible product basis is introduced and a quantitative measure for it is suggested with a view to providing an indirect measure for the bound entanglement of formation of the bound entangled mixed state associated with an unextendible product basis.Comment: 4 pages, Latex, 1 figure, remarks, criticisms welcom

    Classical communication and non-classical fidelity of quantum teleportation

    Full text link
    In quantum teleportation, the role of entanglement has been much discussed. It is known that entanglement is necessary for achieving non-classical teleportation fidelity. Here we focus on the amount of classical communication that is necessary to obtain non-classical fidelity in teleportation. We quantify the amount of classical communication that is sufficient for achieving non-classical fidelity for two independent 1-bit and single 2-bits noisy classical channels. It is shown that on average 0.208 bits of classical communication is sufficient to get non-classical fidelity. We also find the necessary amount of classical communication in case of isotropic transformation. Finally we study how the amount of sufficient classical communication increases with weakening of entanglement used in the teleportation process.Comment: Accepted in Quantum Info. Proces
    corecore